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Sobolev type orthogonal polynomials have been the object of increasing interest
in the last few years. In this paper we introduce a generalization of the usual
Sobolev-type inner product and we compare it with the strict diagonal case. Zeros
and asymptotic properties of these kinds of polynomial sequence are studied.
(c: 1995 Academic Press, Inc.

1. INTRODUCTION

Let,LL be a positive Borel measure on an interval (finite or infinite) Ie R
whose moments are finite and whose support is an infinite set. In the sequel
(Pn ) denotes the sequence of monic orthogonal polynomials (SMOP) with
respect to ,LL and I denotes the interior of I.

We denote by (Qn) the SMOP associated with the inner product

(P, Q) = f P(x) Q(x) dll + !P(e)' AiQ(e)
I

(l.l )

where A E R1r + I, r+ I) is a positive semidefinite matrix, e E R and given a
polynomial P(x), lP(x) denotes the matrix

and !P(x) t its transpose.

(

P(x) )
P'(x)

p1r;(x)
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The inner product (1.1 ) has been considered by several authors when A
is diagonal (see, for instance, [2], [6], [9], [12], [14] and [16]). We are
interested in the analysis of the inner product (1.1), not only as a
generalization of the diagonal case but

(i) It appears as the natural form of an inner product such that the
multiplication operator H = (x - c)'+ 1 in the space of the polynomials is
symmetric and commutes with the multiplication operator G = (x - c) (see
[5, Theorem 6] ).

(ii) In [3] a particular case of the following inner product

<f, g> = r fg d/l + M[ f( c) g( c) + f( - c) g( - c) ]
-a

+ N [ f' (c) g' (c) +f' (- c) g' ( - c) ] ( 1.2 )

has been studied, where /l is a symmetric positive Borel measure on
1=[ -a, a] and M, N E R +. If (Qll) is the SMOP with respect to (1.2),
then Q211(X) = U,,(x2) and Q2,,+ I (x) = xV,,(x2) hold. It follows that (Un)
and (V,,) are SMOP with respect to inner products like (1.1) with A
diagonal and non-diagonal respectively (see [I]).

In this paper a comparison with the diagonal case is provided. In
Section 2, several representation formulas of (Q,,) in terms of (P,,) are
obtained, mainly when A is a 2 x 2 matrix. These results are basic for the
development of the sections 3 and 4. The behaviour of the zeros in different
situations is analyzed in Section 3.

In Section 4, a study of relative asymptotic properties for the orthonormal
polynomials q" in terms of the orthonormal polynomials p" is presented.
A comparison with the results by P. Nevai ([ 17]), F. Marcellan and
W. Van Assche ([ 15]) and G. Lopez, F. Marcellan and W. Van Assche
([ 11 ]) is given; our techniques are different and some new results are
derived. On the other hand, we obtain some information about the
elements of the matrix A from this asymptotic behaviour.

2. REPRESENTATION FORMULAS AND BASIC TOOLS

We need to introduce the kernel matrices
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K;,O.rI(C, C))
K;,l. r l(C, C)

K~,r)(c, C)

where K,,(x, y) = L;~o Pj(x) Pj(Y)/IIP;II~ is the kernel polynomial
associated with the orthogonal polynomials (P,,) and K~",j)(x,y) =

(Oi+j/OXiO.vj)K,,(x,y), Note that the (r+l)x(r+l) matrix IHI" is sym­
metric and positive definite,

The following identity turns out to be convenient (see [7, § 0,8,5 on
p,21-22J)

LEMMA I. Let x, U E R\ X o E R and A E Rk xk. Then

From it, we obtain formula (2,2) that will be relevant in Section 4.

PROPOSITiON 2. For every n E N

(i) The matrix I + A IHJ" _ 1 is non singular

(ii) Q,,(x) =P,,(x)-lP,,(cr(I+ AIHJ,,_d- 1 AIK,,_I(x,e) (2.l)

(iii) (Q", Q")/IIP,,II~= det(I + AIHJ,,)/det(I + AIHI,,_ d (2.2)

Proof (i) As the matrices A and IHJ,;-~ 1 are positive semidefinite and
definite respectively, the matrix IHJ ,~~ 1 + A is non singular. So I + A IHI" _ 1 =
[IH;~, +AJ IH"_I is also non singular.

(ii) Consider the Fourier expansion of Q" in terms of (P,,), then

(2.3 )

If we evaluate the polynomial Q,,(x) and their successive derivatives at the
point c, from i) we get O,,(e)' = P,,( e)' (I+ AIHJ,,_ I) -I and because of (2.3),
the formula (2.1) is true.

(iii) From orthogonality and the above expression for O,,(c)' we
have

(Q", Q")=(Q,,, F,,)= tQ"F"dp.+O,,(c)' AlP,,(c)

= liP"II~ + lP ,,(e)' (I + AIHI,,_ d -I AlP ,,(c) (2.4)
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On the other hand, from Lemma 1 and by straightforward calculations
with determinants, formula (2.1) can be written as

1P',,(c)' I
I+AIHl"

-11 PJx)
Q,,(x) = (det[I + AIHl" -I]) AIK,,(x, c)

Besides, from (2.5) and Lemma 1, we have

li P 112=f Q P dl=IIIP"II~ 1P',,(c)' !(det[I+AIHl ])-1
"Ii I"" I A Ill' ,,( c) I + A 1Hl" ,,- I

I
0 1P',,(c)' I

_ det(/+AIHl,,) liP 112 AIP',,(c) I+AIHl,,_1
- det(/ + AIHl" -I "Ii + det(/ + AIHl" -I)

det(/+AIHl"l 2' -I
det(/ + A 1Hl" _ I) II P" II fl - IP',,( c) (/ + A 1Hl" - I ) A IP',,( c).

Thus, from (2.4), the result follows. I

(2.5)

It is well known that the kernels satisfy the Christoffel-Darboux formula,
(see p. 23 in [4])

If we take successive derivatives with respect to y and evaluate at y = c, by
using Leibniz's formula, we find that, for j = 0, ..., r

.. . )! 1
K:,o.J!(x, y) = II P,,_I Il~ (x _ c)i+ 1 [Tj(x, c; P,,-I) P,,(x)

- Tj(x, c; P,,) P,,_I(X)]

where T)x, c;f) is the j - th Taylor polynomial of fin c. Inserting this
into (2.3) and denoting B(x) = I/IIP,,_III;, [I+AIHl,,_lr l A(x-c)' D(x)
where

r' 1 r! '7)
r!(x-c)-r 1; (x-cl- 1r -) 2!(x-c)-,r-~

D(x)=

we obtain:

I
l!(x-cl- I

2!(X-C)-2

o
1

2! -I
T!(x-c)

o
o

o
o

o
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PROPOSITION 3. The formula

where q,+ ,(x, n) = (x - c)'+' - IP n(c)/ B(x) IP n_,(c) and q,(x, n) =
IPn(c) I B( x) IP n( c) holds.

We point out that B(x) is a matrix polynomial of degree precisely rand
coefficients depending on n, hence deg q,+ 1 = r + land deg q, = r. So, from
(2.6) it follows that the sequence (Qn) is strictly quasi-orthogonal of
order r + 1 with respect to the measure (x - c)' + I df1. and therefore
(x-c)'+' Q"(x)=P11+.+1(X)+L:;:,~_._1).,,jPj(x) where ';'".,,_._1#0.
The numbers Anj can be expressed in terms of the coefficients of the poly­
nomials q,+ I(X, n) and q,(x, n) and the coefficients of the three term
recurrence relation satisfied by the SMOP ( Pn)'

Concerning the general properties about zeros of the polynomials Qn'
the following result can be derived:

PROPOSITION 4. The polynomial Q" has at least n - (r + I) different zeros
with odd multiplicity in f when r is odd and n ;?; r + 2 and at least n - (r + 2)
H'hen r is even and n;?; r + 3. Moreover, if c ¢: I, Qn has at least n - (r + l)
different zeros with odd multiplicity in 1for n ;?; r + 2.

Next, we consider the particular case where A is a 2 x 2 matrix. We will
denote it by A = (~ :v)' Since A is positive semidefinite, we have M;?; 0 and
).

2
:::; M N (therefore N;?; 0). In this situation, IHl n_ 1 is also a 2 x 2 matrix

and det IHl n _, = K,,_ ,(c, c) K;/__'!(c, c) - (K~O__'!( c, c) )2.

We will denote by Q~ the monic polynomials orthogonal with respect to
the inner product

Note that when). = 0 we recover the diagonal case and then Q?(x) = Qn(x).
Let (Pn(X;f1.2)) and (P,,(X;f1.4)) be the SMOP with respect to the

measures df1.2 = (x - C)2 df1. and df1.4 = (x - C)4 df1., respectively and
(K,,(x, y; f1.2)) the sequence of kernels associated with (P,,(X;P2))'

We will use several expressions concerning the diagonal case (see for­
mulas (2.3) and (2.10) in [2]) that we next summarize.

LEMMA 5. Let A = 0, then

(i) Lln(O) = det(I + AlHl n)
= 1+ MK,,_,(c, c) + NK~I__'!(C, c) + MN det 1Hl"_1
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(ii) A,,(O) Q,,(C) = P,,(C)[ I +NK~I.I{(C, c)] - P~(C) NK~O,--li(c, c)

A,,(O) Q~(C) = - P,,(C) MK~O,--I ltc, c) + P~(c)[ I + MK" -I( c, c)]

(iii) Suppose that the condition P,,( c) P" _ I (c; fJ. 2) i= 0 is satisfied for
every n E N. The formula

Q,,(X) = (1- ex,,) P,,(x) + (ex" - P,,)(x - c) PIt _I(X; fJ.2)

+ P,,(X-C)2 P,,-2(X;fJ.4)

where ex,,= l-p,,(C)-1 Q,,(c) and P,,=NP,,_I(C;fJ.2)-1 Q~(c) K"_2(C, C;fJ.2),
holds.

Now, we can obtain several expressions for the polynomials Q; that will
be essential in sections 3 and 4.

PROPOSITION 6. We have

(b)
Q~(x)= P,,(x)

K,,_I(X, c) [ ) , l'
- ) MP,,(c) + .P.,(c)+(MN-A-)

A ,,( .)

x (P,,(e) K~l,--\)(C, c) - p;J e) K:,O,--l/( e, e))]

K'O, Ii( X c)
_ ,,-I' , [NP'(c)+)P (e)+(MN-}.2)

A,,()) " "

(c) Q~(c) = A,,()) -I[A,,(O) Q,,(e) - )P,,_I(e; /12) K,,_I(e, c)] (2.10)

(d) Q~'(e) = A,,0.) -I [A.,(O) Q~(c) + ),P~ -I(e; /12) K" -I( e, c)] (2.11 )

Proof (a) By a simple calculation we get,

A,,()) = I + MK,,_I(C, c) + NK:/·1i(e, c) + 2).K~O.Ii(c, c)

+ (MN _A 2
) det IHJ,,_I (2.12)

Then, from Lemma 5-i), (2.8) follows. Note that, from Proposition 2,
A,,())i=O.

(b) It is a direct consequence of the formula (2.1 ).
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(c) From b) and Lemma 5-ii), we get that

LJ,,().) Q~(e) - LJ//(O) Q,,(e) = ).[ P,,(e) K;,O,I/(e, c) - P;,(c) K,,~ I(C, c)]

Taking into account Lemma 2.1 in [2], the formula for Q~(c) follows.

(d) By differentiating in (2.9) and evaluating at x = c we obtain
LJ,,(2) Q;;'(c). Now it suffices to proceed as in c).

We can write K//_ dx, c) and K~,O,-II(x, c) in terms of p//(x), p//- 1(X;1l2)
and P,,_2(X; 114)' By substitution of these values in (2.9) we get a represen­
tation formula that will be a basic tool to obtain asymptotic results:

PROPOSITION 7. Let c be such that the condition P,,( c) P" _ 1(e; fl2) # 0 is
satisfied for ever.v n E N. Then, the formula

Q;;(.x) = (I - a;;) P,,(x) + (a;; - fJ~)(x - c) P" ,(x; 1l2)

+ fJ;;(x - e)2 P,,_2(X; 114) (2.13)

where

A LJ,,(O) ),
a//=--;-) all + ') PL1,,( A L1,,( A ,,( C )

x [ - ),PIl(e) det IHI Il 1+ p//(c) K~O•.ll(c, c) + P;,(c) K,,~ Ire, c)] (2.14)

and

(2.15 )

holds.

Note that if e is off the support of Il then for every n,
P,,(e) P,,_I(C; 1l2) *0 holds.

3. ZEROS IN THE CASE 2 x 2

Because of proposition 4, we know that for c E Rand n ~ 3 the polyno­
mial Q~ has at least n - 2 different zeros with odd multiplicity in f, namely
~"I ~ ... ~ ~//k with k ~ n - 2. With additional assumptions, we will
improve this result.
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3.1. In the diagonal case, if c 1-1 the zeros are real, simple and at least
n - 1 of them belong to either the interval (inf I, c) or (c, sup I), according
to c ~ sup I or c ~ inf I, (see [18]). Now we are going to investigate these
properties for the polynomials associated with the inner product (2.7) when
crt I. For the sake of simplicity we will only work with an interval I with
sup 1< oc and c ~ sup I, the results for an interval I with inf I> - 00 and
c ~ inf I being analogous.

PROPOSITION 8. If 0 ~ A~ JAiN with M N > 0, then for 11 ~ 3 the polyno­
mial Q;; has real and simple zeros; at least n - I of them are located in
(inf I, c). Moreover, if Q;, has a zero ':;m, outside of (inf I, c), then c ~ ':;/1/1 <
C + (C-';nl)/(n -I) and ¢nn -c < c- ¢n.n-I·

Proof Since c ~ sup I, Lemmas 2.1 in [2] and 5-ii) imply Q;,( c) > 0 for
all nEN, then Q;;'(c) >0 follows from proposition 6-d). We write p(x)=
(x-¢nd",(x-';nd·

If k=n-2(n~3), then (Q;;(x), (x-c)p(x))=O=(Q~(x),p(x)).From
these conditions it follows that Q;;( c) Q;" (c) i' 0 and

sgn[AQ;;(c) + NQ;;'(c)] = -sgn{ [MQ;;(c) + AQ;;'(C)]

+ [l.Q;;(c) + NQ~'(c)]}

Thus, sgn [AQ;,(c) + NQ;;'(c)] = -sgn[MQ;;(c) + AQ;;'(C)] holds, and
therefore we have Q;'(c) Q~'(c) < O. Since Q;;'(c) > 0, we get Q;; < 0 which
implies (;/1" > c. Besides, taking into account that

we deduce that Q~ has not a zero in ( - 00, inf I].
If k = n - I, obviously all the roots are real and simple. Suppose that (;,,/1

is outside of the interval (inf I, c); by orthogonality (Q;;. p) = 0 and since
the sign of Q;;(x) pix) does not change in (inf I, c) we obtain that Q;'(c) ~ 0
and so ¢,lII ~ c.

In addition, if ¢"n > c, from (Q:,(c)/Q,,(c)) = L:;'= i I/(c - (;,rj) -I/(¢m,- c)
<0 we have that (;/I,,-c<c-C;/Ii/n-I and (;/lII-c<c-';/I./I_I'

In general, for any), i' 0, we cannot assure that the above result remains
true for all n ~ 3; however, with some additional assumptions, a similar
result holds for n large enough:

PROPOSITION 9. Let us suppose I hounded and c > sup I, then for all
), E [ - JAiN, + yIMN] with N> 0 there exists a positive integer no, such
that for n ~ no, the polynomial Q:; has only real and simple zeros; n - I 4
them are located in (inf I, c) and the largest zero is greater than c.
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Proof From formula (2.10), taking into account Lemmas 2.1 III [2]
and 5( ii), we have that Q;'( c) < 0 if and only if

so, it suffices to show that

Indeed, let us write a = inf I and denote by X,,) < X,,2 < ... < X"" the
zeros of P1/" Since c?supI we have (P~(c)/P"(c))=LZ~ll/(c-x,,d>

n/(c-x"tl>n/(c-a) and so lim,,~x. (P;,(c)/P,,(c)) = +00. On the other
hand from the interlacing property, i.e. between two consecutive zeros of
P,,(x) there is exactly one zero of P,,_I(X;P2) (see [16, Lemma6.1]),
lim,,~ x.(P;,-l(C; J.12)/P,,- I(C; J.12)) = + 00 follows.

Finally, it can be easily proved that the sequence (P;,(C)/P,,_1(C;P2)
K" _ I (c, c)) is decreasing with positive terms, see Lemma 4.3 in [13]; hence

Hence, there exists a positive integer no such that Q,.(c) < 0 for n? no.
Now, proceeding as in Proposition 8, the result follows.

Remark. In the above proposition, the boundedness of I has only been
used in order to assure that the conditions lim" ~x (P~( c)/P ,,(c)) =
lim,,~xJP;'_l(C;P2)/P"_I(C;112))= +00 hold. So, the proposition remains
valid whenever both conditions are true.

Next, if <;"" > c, we can estimate the distance from <;,m to c in terms of the
parameters M, N and Ie.

PROPOSITION 10. Let Ie> 0 and ~"" > c. The following assertions are true:

(i) If MN?2).2, then f,,,,,-c<N/2JMN-).2.

(ii) If A2~MN~2A2, then C,,,,,-c<A/M.

Proof The polynomial Q;' can be written as Q;'(x) = (c,,,,, -x) ~(x)

where ~(c) < 0 and ¢/ (c) < O. By orthogonali ty (Q;', ~) = 0 and since
JAC,,,,,-X)~2(X)dp(x»O we obtain

(c,,,,, - C)[M~2(C) +2).</I(c) </I'(c) + N(¢/)2(C)] < ).</I2(C) + N~(c) ~'(c)
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It is not difficult to prove that the expression inside the brackets is
positive for all ;. E R. Hence

). + N(¢/(c)/¢J(c))
(nn - c < -M-+-2-;'-(¢>-,(-c-)/¢J-(-'-c)-'-)-'-+-'-N-'-(¢>-'-,-(c-)j-¢>(-c---CC))2

Therefore, it suffices to find the maximum value of (). + Nx)j(M + 2Ax + Nx2)
in (0, + CX)) (note that (¢>'(c)/¢J(c)) >0) or equivalently the maximum value
of yj(a + x 2) in (}.jN, + 00) where a = (MN - }.2)jN2. By elementary
calculations the result follows. I

Remark. Note that i) is also true for A= 0 and in this case we recover
the estimates obtained in [2], [10] and [16]. On the other hand,
whenever M N > ). 2 and }. < 0 the same argument implies ("" - c <
NjJ2(MN _A2).

3.2. In the diagonal case, when 11 is symmetric (i.e. invariant under
the transformation x -> - x and I a symmetric interval) if we take c = 0, a
special situation appears: all the zeros of Qn are real, simple, belong to I
and they are symmetric with respect to 0 (see [2]). We want to point out
that the above assumptions concerning I and Ii imply that K~o. 11(0, 0) = 0

for all n EN.
We are going to analyze the analogous problem in the non-diagonal

case. Firstly, observe that Q~ are symmetric (i.e. Q~( -x) = ( - l)n Q:;(x)) if
and only if ;. = O. We assume that 11 is symmetric, c = 0 and A is singular,
that is MN=).2. Under these assumptions, by using the ChristotTel-Dar­
bOlix formula, (2.9) becomes

where

q~(x, 2n) =x2-}.A 2n(,O-1 IIP 2,,_111- 2 P 2,,(0) P2n - I (0) x

q1(x, 2n) = L/2n(}') -I IIP2n _ I II- 2 P;,,(O)[Mx +n
and

where

r~(x, 2n + 1) = x 2 - L/2"+ I(A) -I IIP2n ll- 2 P2n+ 1(0) P 2n(0)[Ax + N]

r~'(x, 2n + I) = NL/ 2" + IU) -I IIP2n ll- 2 P 2n + 1
2(0) X

We denote by (X 2n,k)i", (Y2n- J,k)in
-

I the zeros of the polynomials P 2n and
P211 - 1 respectively, ordered by increasing size.

640 '812-11



276 ALFARO ET AL.

PROPOSITION 11. Suppose p symmetric, c = 0 and M N = Ie 2. The zeros of
the polynomial Q~n are real and simple and they belong to the interval
[min{xo,x2n.d, max{xO,x1n,2,.}J where xo=-),M I. Moreover, at least
one zero of Q~n can he found between two consecutive zeros of P 2n'

Proof By using the Christoffel-Darboux formula and taking into
account the value of Ll 2n(A) we can write the polynomial q; in (3.1) as

and thus q~(x, 2n) > 0 for every XE (- ex, min{ xo, X 2n. I }) U (max{xo, X 2n,2n},

+ ex). Since q~(xo, 2n) = 0, we can easily deduce that

Q~n(x)> 0 for all x E ( -ex" min {xo, X 2n,l} ) U (max{ xo, X 2n. 2n }, + ex )

(3.3 l

If X o1: [X2n,b X 2n,k+ I J for some k E {I, ..., 2n-I}, as the sign of q~'(x, 2n)
is constant in the interval [x 2n,k' X 2n .k + I J then, from (3.1) and the separa­
tion property of the zeros of the polynomials P,,, the polynomial Q~n

changes its sign in x 2n,k and x 2n.k + I'

On the other hand, it follows from (3.1 l that P2n and Q~n have at most
one common zero, namely xo. We will distinguish two cases according to
whether Xo is or isn't a zero of P2".

If P 2n(xo) #0, we have the following situations: (a)xO<x2n,l;
(blxo >x2n,2n' and (c) there exists a unique kE{I, ...,2n-2} such that
X o E (X 2n,b X 2n,k + I)'

(a) If X o< x2n,l' we have X o1: [X2n,b X 2n,k + I J for every k =

I, ... , 2n - I and then the polynomial Q~n has only one zero between two
consecutive zeros of P2n' Therefore, all the zeros are real, simple and from
(3.3) we obtain

XO<~211.1 <X2n,1 < (21l.2 < ... <~21l.2n<X2n.21J

In the case b), the result can be proved by the same arguments and we
get

(c) We can assure that Q~n has at least one zero in each interval
(x 2n,/, X 2n,/ + I) with j # k. Moreover, if we compare the signs of the polyno­
mial Q~n in x In,b X 0 and x 2n,k + I we obtain that Q~n has a zero in
(.\:2n,k, x o) and another in (xo, X 2n,k + I)'
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Now, we suppose that P2n(XO) = O. First, let Xo = X2n.k where k;;6 0, 2n.
Then there is at least a zero of Q~n in (x 2n')' X2n.) + 1) for j = I, ... , 2n - 1 with
j;;6 k - 1, k. Let us assume k ~ n, that is Xo < O. Since

and

sgn Q~n{J'2n- Lk _ Il = sgn P 2nU'2n- I.k _ Il = ( - I )k - 1

Q~n has a zero in (X 2n.k-I,Y2n-Lk-l)' Moreover, as obviously
q~(xo,2n»0, we can take Y such that xO<Y<hn-Lk and q~(y,2n»0.

Applying once again (3.1) we get that Q~n changes its sign in Y and
X 2n.k+1; therefore Q~n has also a zero in (xo,x 2n.k+Il which proves the
result. In the case k ~ n + 1, the same arguments are valid.

Finally, in a similar way as before, the proposition can be proved for
x O=X2".1 and for x O=X2n.2J1'

We want to note that in this case, although the polynomials Q~n are not
symmetric, they have n positive and n negative zeros as it happens for the
symmetric polynomials. For this, it suffices to locate the zeros of Q~n in
(X2n.n, x 2n.n+I) by applying adequately the formula (3.1) and taking into
account that in this case, (2.9) implies that sgn Q2"(0) = sgn P2,,(0).

PROPOSITION 12. Suppose J1 symmetric, c=O and MN=J.. 2
. The polyno­

mial Q~n + I has at least 2n - 1 real and simple zeros which belong to f
Moreover, if J.. > 0 (respectively J.. < 0) there are at least n negative (respec­
tively positive) zeros and n - 1 positive (respectively negative) zeros; each one
of them is located between two consecutive zeros Y2n + 1,) and Y2n + 1,) + 1 of
P211+ 1 for j = 1, ..., 2n, j ;;6 n + 1 (respectively j ;;6 n).

Proof We know, by Proposition 4, that Q~n + I has at least 2n - 1 dif­
ferent zeros with odd multiplicity in f.

From (3.2) and the separation property of the zeros of the polynomials
Pn, since sgn rt(x, 2n + I) = sgn x, we can say that Q~n + I has at least one
zero in every interval (h" + 1.)' h" + 1.) + I) whenever j = 1, ... , 2n with j ;;6 n
andj;;6n+ I and also in (Y2,,+I.n, Y2n+I,,,+2) because of

Now, from (2.9), it follows that sgnQ;,,+I(O)=(-l)n+l sgn }. and the
proof is complete. I
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We observe, with aid of Mathematica, that for A = (1 1), J1 the Legendre
measure and c = 0, there exists lo E (0, + oc) such that the polynomials Q~

have two complex zeros for n = 3, S whenever A> Ao. The existence of com­
plex zeros for Q~" + I remains an open problem.

Concerning the separation property of the zeros of the polynomials P n

and Q~ when the matrix A is singular note that, for a symmetric measure
J1 and c = 0, a result has just been obtained in propositions 11 and 12. Now
we study the same property when c ¢ I and J1 is not necessarily symmetric.

PROPOSITION 13. Let A~ 0, c ~ sup I and suppose M N =).2. Then,
between two consecutive zeros of P" there is a unique zero of Q~. Moreover
the largest zero of Q~ is greater than the one of P".

Proof From (2.9), we have

. -1
Q~(x) - P,,(x) =-A- ([MP,,(c) + AP;.(C)J K,,_I(X, c)

L1 ,,( )

+ [NP;,(c) + AP,,(C)J K:,o:-,/(x, c)) (3.4)

On the other hand, by using the Christoffel-Darboux formula, the polyno­
mial K" _ ,( x, c1has real and simple zeros which interlace with the zeros of
P". The same result is true for K~,O~ll(x,c) (see LemmaS.l in [13J). Then
if (x"il;l~ I are the zeros of P'P from (3.4 l, the polynomial Q~(.\) changes its
sign at each XIIi' i=l, ... ,n. Moreover, from (3.4), Q~(x"J<O and thus
~nJ1 > X nn ·

Remark. Proposition 13 implies that Q;; has at least n - 1 zeros in 1,
which improves, for A singular, the result in Proposition 8.

4. RELATIVE ASYMPTOTICS FOR C OFF Supp II IN THE CASE 2 x 2

In this section we are going to analyze the asymptotic behaviour of the
Sobolev-type orthonormal polynomials with respect to the standard
orthonormal polynomials and to compare the results with the previous
ones obtained by Lopez, Marcelliin and Van Assche (see [11 J and [15]).
In order to do this we will assume that the measure J1 belongs to the Nevai
class M(O, 1). Recall that this means that supp Jl = [ -1, 1] u E with E a
set which is at most denumerable and E' c { - I, I}.

Let (Pnl be the sequence of orthonormal polynomials with respect to
such a measure Jl and define cp( x) = x +~x 2

- 1 where the square root is
such that Icp(xll > 1 whenever XEC\[ -1,1], which implies that
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(4.1 )

(4.2)

Jx2- I > 0 for X> I and Jx2- I < 0 for x < - 1. It is known that for all
1=0,1,2, ...

. p~jl(X)
11m I jl ) = cp(x)
" P,,_I(X

pl)+I)(X) I
lim" . =-0==

" np~!I(x) Jx 2- 1

uniformly on compact subsets of C\supp fJ. (see [II] and p. 33~36 in
[17] ).

Moreover, fJ. E M(O, I) implies that fJ.2 E M(O, I) (recall that dfJ.2 =

(x-C)2dli) and as a consequence we have (see [17], Theorems 20,26 and
29, p.68-73)

lim P,,(X;,u2) = I (CP(X)_cp(C))2
" p,,(x) 2Icp(c)1 x-c

uniformly on compact subsets of (C\supp Ii) \ {c} ,

(4.3)

and

I
· Pn(C;li2)
Im---
" p,,(c)

cp'2(C)

2Icp(c)1
(4.4 )

(4.5 )

Before we study the relative asymptotics we need to known the "size" of the
kernels relative to the polynomials p" and their derivatives. The following
discrete version of I'Hospital's rule is often very helpful in order to calculate
limits (see e.g. [8])

STOLZ CRITERION. Let (x,,) and (y,,) be real sequences. Suupose that (y,,)

is monotonic and yni=Ofor all n. .lflimn(xn+,-xn)J(Yn+I-Yn)=LERu
{ ± en} exists, then lim" x,/vn= L provided either lim" x" = lim" Yn = 0 or
lim" Y" = ± en.

LEMMA 14. If fJ. E M(O, I) and x E R\supp II then

I· p~(x) -I' p,,(x)p;,(x) -I' p'~(x) _ 2( ')-1
1m - 1m (0 I) - 1m (I I) - cp .\
"K,,_l(X,X) n K"~I(X,X) "K"~l(X,X)

and

lim n -1Kn(x, x) = + CfJ for every IX> 0
"

(4.6)

(4.7)
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(4.8)

Proof If XER\suppp, (K,Jx,x)) and (K~I.I\(X,X)) are increasing
sequences which tend to infinity. The same is true for (K~O.I)(X, x))
whenever x E (0, + ex;)\supp p. If x E ( - 00, 0) \supp f../, it is clear that
(K~O.I)(X,X)) is a decreasing sequence which tends to -00. By the Stolz
criterion and (4.1), (4.6) follows.

On the other hand, it suffices to prove (4.7) for ex. a positive integer.
Then, by Stolz criterion and (4.6),

I· -C( (.. I' p~(x) [2() IJ I' K,,_I(X,X)1m n K" .x, ~\ )= 1m C( 1 '" = qJ x - 1m '" _ I
" " n - (n - ) " n

By applying this procedure (ex. - 1) times, (4.7) follows.

Remark. The asymptotic formula Iim"p~(x)/K"_I(X, x) = qJ2(X) - 1 was
proved by Nevai [17, Theorem 11, p. 31] using different techniques.

We are now ready to deduce our main results. A first one is an
asymptotic expression for the ratio (Q:;, Q~)/II P"II~, where (Q,,) is the
SMOP associate with the inner product (2.7). In what follows, we write
IIQ~112 = (Q~, Q~).

PROPOSITION 15. Let p E M(O, I) and C E R\supp f../, then

I· IIQ~II I ( )jrankAIm--= qJ C

" II P"II"

Proof From (2.2) and (2.8) we get IIQ~r/I' Pnll;' = det(I + AIHI,,)/
det(1 + AlHl n _ I) = L1 nO·)/L1 n _ I( ).).

It is clear, from (2.12), that (L1,,(A)) is an increasing sequence which tends
to infinity; so, by Stolz criterion, limn II Q~ fill Pnll;' = Iim,,( L1,,(A) ­
L1 n _ 1(A))/(Ll,,_I(A) - Ll n - 2().)) where, by (2.12) and Lemma 2.1 in [2],
straightforward calculations lead to

Whenever rank A = 2, on the right hand side of (4.9) the main contribution
to the limit is the last term, so by (4.1) and (4.6), limn IIQ~112/11 P"II;' =
limn (P~_I(C)/P~_2(C)) (P~_2(C; f../2)/P~_3(C; f../2)) = <p4(C).

If rank A = I, by analyzing separately the cases N # 0 and N = 0 (which
implies A=0 and M #0), from (4.1) and (4.2), we get lim" IIQ~f111 P"II;' =
lim" P~ _ I (c )/p~ _ 2( c) = cp2( c) and the proof is complete. I
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Denote by (q~) the sequence of orthonormal polynomials for the inner
product (2.7). Since an asymptotic expression for the ratio q~{x)/p,,(:r) will
be deduced from formula (2.13), we need to know the asymptotic
behaviour of the coefficients ex~ and p~.

PROPOSITION 16. Suppose IJ. E M(O, I) and c E R\supp Il. Let cx;; and /3;; be
the coefficients in formula (2.13). Then

(a) If rank A = 2, lim" ex;' = lim" p;, = I

(b) If rank A = 1, lim" cx;, = I and lim" p;, = 0

Proof By (2.15) and Lemma 5 we can write:

p;; = II P"IIII np,,(c) K,,_ 2(C, c; ~12) [ N p;,(c) + ~1
IIP,,-I(·;1J.2)lljl2 p,,-dC;1J.2)LI,,(/.) np,,(c) nJ
+ (MN _ ).1) Kn_l(c, c) K n _ 2(C, C; Ill)

LI,,(),)
(4.10)

Taking into account that detlHJ,,_I=K"_2(c,c;1'2)K,,_I(c,c), from (2.12),
(4.2) and Lemma 14 we find that, when rank A = 2,

and so, by letting n tend to infinity in (4.10) and using (4.2) and (4.11),
lim" p;; = I follows.

On the other hand, Lemma 5 allows us to write (2.14) in the form

). A ')-I(MK ( ,) NP;'(C)KIO,II(. )CX,,=LJ,,(A. ,,-.. 1 C,( + -- n-I (,C
p,,(C)

1 [P;'(C)K ( 0) K IO. II oJ (MN 12)d IHJ )+ 1'. -- n _ I C, (+ "_ I (C, () + - A et n _ I
p,,(C)

(4.12)

(4.11 ), (4.6) and (4.7) imply that, for rank A = 2, the only contribution in
the limit is the last term in (4.12) and hence lim" ex;; = 1

Next, suppose rank A = I. Then

,1,,(1.) = 1+ MKn_l(c, c) + NK~I... \I(C, c) + 2)'K~o~li(c, c)

and in (4.10) the last term vanishes. From (4.2) and (4.6), whether N¥O

or N = 0, we find that limn P;; = O. Formula (4.12) together with the
assumption rank A = 1 and formula (4.6) yield lim" ex;; = I. I

We are ready to prove:
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PROPOSITION 17. Let fJ- E M(O, 1) and c E R\supp fJ-. Then for all
j= 0,1, ...

lim (q;')(j)(x) r (CP(X)-cp(c))21rankA (4.13)
11 p~/(x) l2(x - c) cp(x) !cp(cl!

uniformly on compact subsets of (C\supp II) \ {c} and

(4.14)

Proof We write (2.13), in the form

q;;(x) IIP"II/I--=--
p,,(x) IIQ;,II

From (4.1), (4.3) and (4.5) we obtain

I
. (x - c) Pn - I(X; 1l2) (cp(x) - cp(c) f
1m = -----'----
n PnC") 2(x-c) cp(x)

uniformly on compact subsets of (C\supp fJ-) \ { c} .
As an easy consequence of the above we get

(4.16 )

lim (x - C)2 Pn _ 2(x; fJ-4) = ((CP(X) - cp(C))2)2 (4.17)
n P,,(x) 2(x- c) cp(x)

uniformly on compact subsets of (C\supp fJ-) \ { c}. The asymptotic result
(4.13) for j = 0 follows by letting n tend to infinity in (4.15), using Proposi­
tions 15 and 16 and either (4.16) or (4.17).

Now we can differentiate both sides of

r q;'(x) l (cp(x) _cp(C))2 Jrank A

1~ p,,(X) = 2(x - c) rp(X) Icp(c)\

(see [19, Theorem 10.28]). Hence

1· a;,(X))' l' p~(x) rq;,'(X) q;'(X)l f'1m -- = 1m-- ----- = (x)
It n(X) It p,/X) p;,(X) p,,(X) .
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uniformly on compact subsets of (C\SUpp p) \ {c}, where the definition off
is obvious. From (4.2) and (4.13) for j = 0, it follows that (4.13) is true for
j= 1.

The proof of (4.13) is completed by induction using the scheme
employed in passing to the first derivative and taking into account (4.2).

Formula (4.14) follows directly from (4.13). I
Remark. For j = 0, this proposition includes the results for the cases

MioO, N=O=). (see [17, Lemma 16 on p. 132J) and NioO, M=O=),
(see [15, Theorem 2] ).

Also, this asymptotic result has been obtained in [11] by using different
techniques.

Proposition 17 tells us that the point c, where the derivatives in Sobolev­
type inner product are evaluated, is the zero of the limit function in the
relative asymptotic behaviour. Next we are going to obtain the masses in
the discrete part of the inner product.

PROPOSITION 18. Let P E M(O, I) and c E R\supp p. The following asser­
tions are valid:

(a) If rank A = 2 and I. io 0, then limIlP~(c) q;"(c)/n 2=
4), Jc2 - I/(MN _),2)

(b) if rank A=2 and ),=0, then limIlP~(c)q;"(c)/n=4N~I(c2_1)

(c) If rankA=l and MNI.ioO, then limllp;,(c)q;,'(c)/p;,(c)=
A. sgn c/2N( c2

- I )

(d) if rankA=l and M=A=O, then limIlP;,(c)q;"(c)=
2N- 1 IJc2

- 11
(e) If rankA=l and N=),=O, then limIlPIl(c)qll(c)=

2M- 1 IJc2
- 11.

Proof Formula (2.11) for orthonormal polynomials gives

(a) Suppose rankA=2 and AioO. From (4.2), (4.6) and (4.11) we
find that
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Using (4.1 )-( 4.6) and Proposition 15 we obtain

1
. q;;'(c) p;,(c) _ lA cp2(C) - 1
1m 7 - 17
n W MN-A~ cp(C)

where the last equality follows from the function cp,

(b) If rank A = 2 and A= 0, in a similar way we have

and by the same reasoning as before, it follows that limn q;;'(c) p;.(c)(n =
4N- ' (c

2 -1).

(c) It suffices to proceed as in the two previous cases, taking into
account that if rank A = 1 with MNA # 0, then

J,,(A) = 1+ MKn _ [(c, c) + lAK;,O,li(c, c) + NK;,I __'i(c, c)

and hence limn N J,,( A) - I K~,l__l i( C, c) = 1. Since

I
, q;;'(c) p;,(c)
1m 7

p;,(c)

the result follows from (4.1 H 4.6) and Proposition 15.

(d) In a similar way we can find this asymptotic formula, which was
already given in [15, formula (22) on p. 199].

(e) Whenever rank A = 1 and N = A= 0, formulas (2.8) and (2.10)
give

and the result follows immediately. This result can also be found in [17,
Lemma 16]. I

The asymptotic behaviour of some expressions involving either
q;;'(c)p~(c) or q~(c)Pn(c) gives us information about the matrix A in the
inner product.

COROLLARY 19. Let q;; and Pn the orthonormal polynomials associated
with the product (2.7) and the measure fl, respectively, Suppose 11 E M(O, I)

and c E R\supp fl. Then
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(a) rank A = 2 and A. # 0 if and only if lim" q~'(c) p~(c)/n2 E R\{O}
(b) rank A = 2 and A=°and only if lim" q~'(c) p~(e)/n E R\{O}
(c) rank A = 1 and MNA *0 if and only if lim" q~'(e)p~(c)/

p~(c)ER\{O}

(d) rank A = I and M = A=°if and only if lim" q~'(e) p~( e) E R\ {O}

(e) rankA= 1 and N=A=O if and only iflim"q~(c)p,,(e)ER\{O}

Proof Because of Proposition 18, in all these five cases, it suffices to
prove the corresponding sufficient condition.

Firstly, let us note that when rank A = I and N = A= 0 it can be deduced
that lim"p;2(c) q~'(e) p~(e) = 00 and hence lim" n-~q~'(e) p~(e) = ex for
r:t.=0, 1,2.

(a) Assume that lim" n - 2q;;'(e) p;,( e) E R\ {O} . Then the case
rank A = 1 and N = A=°is excluded. On the other hand, it is obvious that
in b), c) and d) the corresponding limit is either infinity or zero. Thus the
only one possibility is rank A = 2 and A*0.

The remaining cases (b), (c), and (d) can be proved in the same way.

(e) From (2.13), we have q~(e)p,,(e) = (II P"II" (1 - r:t.~)p~(e»/IIQ~II.

Now, it is not difficult to show that N *°implies lim" q~(e) p,,(c) = 00, So,
lim" q~( e) p,,(e) E R\{O} gives N =°and therefore rank A = I and ), = 0. I

Next we analyze the asymptotic behaviour of the zeros of Q~ off supp /1.
Recall that (';nk)Z~ I are the zeros of Q~ ordered by increasing size.

Let /1 E M( 0, I ) and suppose e ~ I, then Proposition 9 assures that for all
sufficiently large n, Q~ has real and simple zeros, ';/1" > e and the other
zeros belong to ( - 1, c).

PROPOSITION 20. If N = 0, then for all r:t. E (0, 1), ,;"" - e= o(n -~) when n
tends to infinity,

Proof If N *0, from Lemma 5(ii), limn Q~'(c)/n"'Q~(e) =°holds for all
r:t. ~ 0, where formulas (4.2) and (4.6) have been used. Otherwise, as

Q~'(c) _ " _1_

Q~(e) - k~l e - ';"k

and (~nk)Z= I c( -1, e), we have 1/(¢"n-e»(n-l )/(e+ 1)-[ Q~'(c)/Q;'(c)]'

Therefore, ¢"" - c = o( n -~) for all r:t. E (0, 1). I
Let us note that, when N *0, c attracts the greatest zero of Q~.
On the other hand, we know that each polynomial Q;; has at most two

zeros off ( - 1, 1). We are going to show that when rank A = 2 and n is large
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enough Q~ has precisely two zeros otT ( - 1, 1) and both are attracted

by c.

PROPOSITION 21. Let rank A = 2. Then there exists a positive integer no
such that for every n? no, Q~ has two zeros off (-1, I). Besides,
1< ~n.n -1 < C < ~n.n and limn ~n.n _I = Iimn~n.n = c.

Proof From formulas (4.10) and (4.12) it can be deduced that

lim (l - ex~) P,le) = a= lim (ex:; - p:;) P" -l(c; Jl2)
" "

which implies that, for x E [ I, e),

lim (I - ex:;) PII(x) = 0 = lim (ex:; - P:;) P,,_I(X; tl2)
t1 It

Recall that when rank A = 2, then lim" P:; = I. Thus if we evaluate (2.13)
at x = 1 and if we use the above results then we have lim" Q~( 1) > O. As

Q~(c) < 0 for all n large enough (see Proposition 9), we find that

1< ~"." _I < e < ~ "." for all sufficiently large n.
Let e E R with 0 < e < c - 1. By repeating the above argument we obtain

that lim" Q~(c - e) > a and so there exists a positive integer n I such that

c-e<~"."_l<e for all n?n 1 and hence lim"~,,."_l=c.

Remark. Let us note that when rank A = 1 and ),? 0, because of

Proposition 13, Q~ has only one zero otT ( - 1, 1). The question whether

this result is true for rank A = 1 and A< a remains open.
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